Deformation Quantization Exercise Sheet 4

Ján Pulmann

[!] marks a more important exercise

Exercise 1.

- 1. Check that L_{∞} morphisms take Maurer-Cartan elements to Maurer-Cartan elements
- 2. [!] Check that an L_{∞} morphism between 2 dglas induces a morphism of Lie algebras:

$$U_1: H^*(\mathfrak{g}_1, d_1) \longrightarrow H^*(\mathfrak{g}_2, d_2)$$

3. (optional): Check that U_1 defined by the graph expansions agree with the HKR isomorphism (use that the integral corresponding to the graph with one aerial and m ground vertices is $(2\pi)^m/m!$). If you wish, you can compute this integral for low m.

Exercise 2. Let g be a Lie algebra and let $t \in (\text{Sym}^2 \mathfrak{g})^{\mathfrak{g}}$. Let (X, ρ_X) and (Y, ρ_Y) be representations of \mathfrak{g} .

• ! Check that $t_{X,Y} : X \otimes Y \longrightarrow X \otimes Y$ defined as below assemble into a natural transformation (endomorphism of the tensor product functor of $U\mathfrak{g}$ -mod)

$$t_{X,Y}: x \otimes y \longmapsto t^{ij} \rho_X(e_i)(x) \otimes \rho_Y(e_j)(y).$$

Here $t = t^{ij} e_i \otimes e_j$ in some basis $\{e_i\}$ of \mathfrak{g} . Where do we use the invariance of t?

• Check that

 $\beta_{X,Y} = \sigma_{X,Y} \circ (id_{X \otimes Y} + \varepsilon t_{X,Y}) : X \otimes Y \to Y \otimes X$

gives a braiding on $U\mathfrak{g}\text{-mod}_{\varepsilon}$, where $\varepsilon^2 = 0$ is freely adjoined to Hom-spaces of $U\mathfrak{g}\text{-mod}$. The natural transformation σ is the symmetry of $U\mathfrak{g}\text{-mod}$.