FUSION CATEGORIES AND PHYSICS: PROBLEM SET 1

KYLE KAWAGOE

1. TANNAKA-KREIN FOR GROUPS

Let $F : \mathsf{Rep}G \to \mathsf{Vec}$ be the forgetful functor from the category of finite dimensional representations of a finite group G to the category of finite dimensional vector spaces. Prove that Nat(F, F) is a group and is isomorphic to G.

2. Algebras

Let \mathcal{C} be a \mathbb{C} -linear category and let M be an object in \mathcal{C} . Prove that End(M) is an algebra.

Now suppose that \mathcal{C} is also monoidal with a linear monoidal product \otimes . Suppose now that $M \in \mathcal{C}$ and there is some $m: M \otimes M \to M$ such that the following diagram commutes:

Prove that End(M) is a commutative algebra.

3. BIALGEBRAS

Let A be a finite dimensional bialgebra with coproduct Δ . Prove the following:

(1) If $\pi : A \to B(V)$ and $\rho : A \to B(W)$ are finite dimensional A-modules, then $\pi \bigotimes \rho := (\pi \otimes \rho) \circ \Delta$ is also a finite dimensional representation.

- (2) $\pi \bigotimes (\rho \bigotimes \eta) \cong (\pi \bigotimes \rho) \bigotimes \eta$. Call this associator $\alpha_{\pi,\rho,\eta}$.
- (3) Prove that α obeys the pentagon equation.
- (4) Prove that $_A$ Mod is a semisimple monoidal category.

If you prefer, you may do this all with right modules.

4. CLASSIFICATION OF MONOIDAL STRUCTURESS

Let VecG be the category of G-graded finite dimensional vector spaces. On objects, the $g \in G$ component of the tensor product of G-graded spaces $V = \bigoplus_{g \in G} V_g$ and $W = \bigoplus_{g \in G} W_g$

is defined by

$$(V \otimes W)_g := \bigoplus_{h \in G} V_{gh} \otimes W_{h^{-1}}.$$

Date: May 19, 2025.

Classify, up to linear monoidal equivalence, all monoidal categories whose underlying \mathbb{C} linear category is VecG. Even if you know the answer, you should prove this using the basic definition of monoidal categories and their functors. *Hint: Use group cohomolgy.* If you don't know group cohomology, you may simplify to the case where $G = \mathbb{Z}/2\mathbb{Z}$. For simplicity, you may also use the skeletal version of VecG.