
INTRODUCTION TO FUSION CATEGORIES

KYLE KAWAGOE

Abstract. In these notes, we introduce fusion categories and explain their relationship
to topological physics.
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1. Rings and fusion rings

Definition 1.1. Let (F,+) be a finitely generated abelian monoid. The triple (F,+,×)
for × : F × F → F is called1 a fusion ring if for all a, b, c ∈ F ,

(1) the only element of F with an additive inverse is the additive identity,
(2)

a× (b× c) = (a× b)× c,

(3)
a× (b+ c) = a× b+ a× c

and
(a+ b)× c = a× c+ b× c.

A unital fusion ring has a multiplicative identity.

Although a fusion ring superficially looks similar to a ring, it is actually very different.
Clearly, the definition is different, but the situation is slightly worse than that. Rings and
fusion rings fundamentally describe different types of things. For example, fusion rings
are good at describing the structure of ring bimodules in terms of their relative tensor
product and direct sums.

Date: May 21, 2025.
1There are other definitions one could use, but we choose this one.
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In the fusion ring of R−R bimodules, the equality of elements of the fusion ring means
that the two elements are isomorphic as R−R bimodules. Defining these isomorphisms
in a consistent way is generally hard if you don’t have full knowledge of the original ring
R. If you only know the fusion ring, the best you can do is get a family of “coherence
conditions.” The solutions to these coherence conditions are examples of mathematical
objects called monoidal categories. If one starts using fields and certain types of algebras
as ingredients in a similar story, fusion categories will start showing up.

2. Monoidal categories

Definition 2.1. A monoidal category is a 6-tuple (C,⊗, I, α, λ, ρ) where
(1) C is a category,
(2) ⊗ : C × C → C is a functor,
(3) I is an object in C called the unit object,
(4) α : − ⊗ (− ⊗ −) =⇒ (− ⊗ −) ⊗ − : C × C × C → C is a natural isomorphism

called the associator,
(5) λ : I ⊗− =⇒ − : C → C is a natural isomorphism called the left unitor,
(6) λ : −⊗ I =⇒ − : C → C is a natural isomorphism called the right unitor.

These structures are subject to the following two coherence conditions given by commu-
tative diagrams. In the following diagrams, we write X ⊗ Y as XY .

((WX)Y )Z (W (XY ))Z W ((XY )Z)

(WX)(Y Z) W (X(Y Z))

αW,X,Y ⊗1Z

αWX,Y,Z

αW,XY,Z

1W⊗αX,Y,Z

αW,X,Y Z

(XI)Y X(IY )

XY

ρX⊗1Y

αX,I,Y

1X⊗λY

Example 2.2. Let C and D be categories. The endofunctor category End(C) has a
natural monoidal structure with the product given by functor composition.

In these notes, all vector spaces are complex and finite dimensional. For us, Vec is the
category of such vector spaces. This convention includes representations and algebras as
well.

Examples 2.3. Here are a few examples of monoidal categories that show up in our
context frequently:

• Vec,
• the category of representations RepG for a finite group G,
• the category of right (or left) modules ModA for a bialgebra A,
• the category of A−A bimodules AModA for an algebra A with the relative tensor
product ⊠A.

For the remainder of this section, we refer to the monoidal categories (C,⊗, I, α, λ, ρ), (D, •, J, ω, l, r)
simply as C and D, respectively.
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Definition 2.4. A monoidal functor from a monoidal category C to a monoidal category
D is a triple (F, ϕ, ι) where

• F : C → D is a functor,
• ϕ : (F−) • (F−) =⇒ F (−⊗−) is a natural transformation,
• ι : J → FI is a morphism.

The ι and the components of ϕ are called structure morphisms. These structures are
subject to the following coherence conditions requiring that following diagrams commute:

(FX • FY ) • FZ FX • (FY • FZ)

F (X ⊗ Y ) • FZ FX • F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z))

ωFX,FY,FZ

ϕX,Y •1FZ 1FX•ϕY,Z

ϕX⊗Y,Z ϕX,Y ⊗Z

F (αX,Y,Z)

FX • J FX • FI

FX F (X ⊗ I)

1FX•ι

rFX ϕX,I

F (ρX)

J • FX FI • FX

FX F (I ⊗X)

ι•1FX

lFX ϕI,X

F (λX)

A monoidal functor is called strong if the structure morphisms are invertible and strict
if they are all identity morphisms.

Definition 2.5. A monoidal equivalence is a monoidal functor which is also an equiva-
lence of categories.

Example 2.6. There is a monoidal functor from RepG to Vec called the forgetful functor.
This is the functor which assigns every representation to its underlying vector space. The
structure morphisms are all the identity morphism.

Definition 2.7. Let (F, ϕ, ι), (G, θ, η) : C → D be monoidal functors. A monoidal natural
transformation γ : F =⇒ G is a natural transformation such that the following diagrams
commute:

FX • FY GX •GY

F (X ⊗ Y ) G(X ⊗ Y )

γX•γY

ϕX,Y θX,Y

γX⊗Y

J

FI GI

ι
η

γI

For the remainder of this document, we will exclude associator and unitor labels in
diagrams where these labels are clear from context.
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3. Duals

Definition 3.1. Let C be a monoidal category and let X ∈ C. An object X∗ is called a
left dual of X if there exist evX ∈ C(X∨ ⊗X, I) and coevX ∈ C(I,X ⊗X∨) (notice the
order of X and X∗) such that the following diagrams commute:

X X

I ⊗X X ⊗ I

(X ⊗X∨)⊗X X ⊗ (X∨ ⊗X)

1X

coevX ⊗1X 1X⊗evX

X∨ X

X∨ ⊗ I I ⊗X∨

X∨ ⊗ (X ⊗X∨) (X∨ ⊗X)⊗X∨

1X

1X∨⊗coevX evX ⊗1X∨

Likewise, ∨X is a right dual of X if there exist ev′X ∈ C(X⊗∨X, I), coev′X ∈ C(I, ∨X⊗X)
such that the following diagrams commute:

X X

X ⊗ I I ⊗X

X ⊗ (∨X ⊗X) (X ⊗ ∨X)⊗X

1X

1X⊗coev′X ev′X ⊗1X

X∨ X

X∨ ⊗ I I ⊗X∨

X∨ ⊗ (X ⊗X∨) (X∨ ⊗X)⊗X∨

1X

1X∨⊗coevX evX ⊗1X∨

Definition 3.2. A category is called rigid if all objects have a left and right dual.

Fact 3.3. Left and right duals are unique up to unique isomorphism. We are therefore
justified in saying “the” left and right dual.

Example 3.4. In Hilb, notice that the left dual of a Hilbert space H is its dual space
H∨ which is the space of linear functionals H → C. The evaluation morphism is literally
the evaluation of the functional f ∈ H∨ on a vector v ∈ H, f ⊗ v 7→ f(v). On the other
hand, if {ei} is an orthonormal basis for H, then we may take the coevaluation map to
be

z 7→ z
∑
i

ei ⊗ e∨i
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where e∨i (ej) = δi,j. The above coevaluation map is basis independent.

4. Linear categories

4.1. Linear structure.

Definition 4.1. A category C is called additive if each Hom set in C is given the structure
of an abelian group and obeys the following properties:

(M1) Composition of morphisms is a biadditive,
(M2) there is a zero object 0 ∈ C such that C(0, 0) = 0 (the trivial group),
(M3) for every two objects, X, Y ∈ C, there exists an object X ⊕ Y and morphisms

iX ∈ C(X,X ⊕ Y )

iY ∈ C(Y,X ⊕ Y )

pX ∈ C(X ⊕ Y,X)

pY ∈ C(X ⊕ Y, Y )

such that
(IP1) pXiX = 1X
(IP2) pY iY = 1Y
(IP3) iXpX + iY pY = 1X⊕Y .

Lemma 4.2. Let C be additive and let X, Y ∈ C. Then iX ∈ C(X,X ⊕ Y ) and pY ∈
C(X ⊕ Y, Y ) have pY iX = 0. Similarly, pXiY = 0.

Proof. Since iXpX + iY pY = 1X⊕Y ,

pY iX = pY (iXpX + iY pY )iX = pY iX + pY iX .

Therefore, pY iX = 0. Similarly, pXiY = 0. □

Lemma 4.3. Let C be an additive category and let X, Y ∈ C be non-zero objects. Then
iXpX ̸= 0 and iY pY ̸= 0.

Proof. In a linear category, a zero morphism composed with any other morphism is also
a zero morphism. However,

pX(iXpX)iX = 1X .

It is possible to show that an object A ∈ C is a zero object if and only if End(A) = 0.
Therefore, the non-trivial object X has 1X ̸= 0. Therefore iXpX ̸= 0. The same argument
holds for why iY pY ̸= 0. □

Proposition 4.4. Let C be additive and let X, Y ∈ C. Then X ⊕ Y is unique up to
isomorphism. This isomorphism is unique in the sense that there is a unique isomorphism
which map the inclusions and projections of one direct sum to another.

Proof. Suppose Z,W obey the axioms for the direct sum of X, Y via the morphisms
iZX , i

Z
Y , p

Z
X , p

Z
Y and iWX , i

W
Y , p

W
X , p

W
Y . Then

iWX p
Z
X + iWY p

Z
Y ∈ C(Z,W ) iZXp

W
X + iZY p

W
Y ∈ C(W,Z).
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These morphisms obey

(iWX p
Z
X + iWY p

Z
Y )(i

Z
Xp

W
X + iZY p

W
Y ) = iWX p

Z
Xi

Z
Xp

W
X + iWY p

Z
Y i

Z
Xp

W
X + iWX p

Z
Xi

Z
Y p

W
Y + iWY p

Z
Y i

Z
Y p

W
Y

= iWX p
W
X + 0 + 0 + iWY p

W
Y

= 1W .

Similarly,

(iZXp
W
X + iZY p

W
Y )(iWX p

Z
X + iWY p

Z
Y ) = 1Z .

Therefore Z ∼= W .
We leave it to the reader to prove that if there is some isomorphism ϕ ∈ C(Z,W ) such

that

ϕiZX = iWX , ϕiZY = iWY , pZXϕ = pWX , pZY ϕ = pWY ,

then ϕ = iWX p
Z
X + iWY p

Z
Y . □

Remark 4.5. The above discussion of uniqueness is fairly subtle. Certainly, there are
many isomorphisms in Vec from C ⊕ C to itself. However, once one makes a choice of
inclusions and projections, only the identity morphism preserves these structures.

Remark 4.6. Proposition 4.4 justifies our notation which implicitly picks a distinguished
object to call X ⊕ Y for each X and Y . For this reason, we also choose to pick these
representative objects so that (X⊕Y )⊕Z = X⊕ (Y ⊕Z). Also note that ⊕ : C ×C → C
is a functor.

Definition 4.7. Let k be a field. An additive category C is called k-linear if each Hom
group is further endowed with the structure of a vector space over k and morphism
composition is bilinear.

In these notes, all linear categories are taken to be C-linear. Recall that we also take
all vector space to be finite dimensional.

Definition 4.8. Let C,D be linear categories. A functor F : C → D is called linear if it
is linear on Hom spaces.

Definition 4.9. Let C be a monoidal category with monoidal product ⊗ and also let C be
linear. We say that C is a linear monoidal category if the maps ⊗ : C(X, Y )×C(Z,W ) →
C(X ⊗ Z, Y ⊗W ) are linear in both arguments.

Definition 4.10. A linear monoidal category is one for which the monoidal product is a
linear functor.

Fact 4.11. In an additive category C with objects X, Y ∈ C such that C(X, Y ) ̸= 0, the
0 morphism in C(X, Y ) is not invertible.

Definition 4.12. Let C be an additive category. A morphism e ∈ C(X,X) is called an
idempotent if e ◦ e = e. We say that the idempotent e splits if there exists some object A
and morphisms p ∈ C(X,A), i ∈ C(A,X) such that e = i ◦ p and p ◦ i = 1A. The category
C is called idempotent complete if all idempotents in C split.

Exercise 4.13. Let C be idempotent complete. Prove that an object in C is simple if
and only if it is indecomposable.

6



4.2. Simplicity. We have tailored the following definition for our purposes.

Definition 4.14. Let C be an additive category with objects X, Y ∈ C. If there is a
morphism x ∈ C(X, Y ) with a left inverse, then we say that X is a subobject of Y . Note
that 0 is a subobject of every object and every object is a subobject of itself. A subobject
Y of X is called a trivial subobjects if Y ∼= 0 or Y ∼= X.

Definition 4.15. In the context of linear categories:

• An object is simple if it has no non-trivial subobjects.
• An object is decomposable if it is isomorphic to a direct sum of two non-zero
objects.

• An object is semisimple if it is isomorphic to a direct sum of simple objects.
• An idempotent complete linear category C is called semisimple if for all X ∈ C,
End(X) is a semisimple algebra.

• A semisimple category is finitely semisimple if it is semisimple and has a finite
number of isomorphism classes of simple objects.

Lemma 4.16. Let C be a linear category with a non-simple object X ∈ C. Then we know
there exists some non-trivial subobject A with morphisms i ∈ C(A,X) and p ∈ C(X,A)
such that i ◦ p = 1A. We have that p ◦ i ̸= 0 and p ◦ i ̸= 1X .

Proof. The proof follows similarly to Lemma 4.3 to show that p ◦ i ̸= 0. We also know
that p ◦ i ̸= 1X since X and A are not isomorphic. □

Definition 4.17. Let C be a linear category. Objects X, Y ∈ C are distinct if C(X, Y ) ∼=
0 ∼= C(Y,X).

Lemma 4.18. Let C be idempotent complete and let A ∈ C. If e ∈ End(A) is a non-trivial
idempotent (e ̸= 0, e ̸= 1X), then A is decomposable.

Proof. Let e ∈ End(X) be a non-trivial idempotent. Then 1 − e is also a non-trivial
idempotent. Since every idempotent splits in C, there exists objects A,B along with

iX ∈ C(X,A)
iY ∈ C(Y,A)
pX ∈ C(A,X)

pY ∈ C(A, Y )

which satisfy the usual inclusion/projection relations making X ⊕ Y ∼= A. □

Lemma 4.19. Let C be linear and let X, Y ∈ C be non-zero objects. Then dim(End(X⊕
Y )) ≥ 2. In particular, End(X ⊕ Y ) ≇ C.

Proof. First, notice that since X and Y are not zero objects, Lemma 4.3 implies that
iX ◦ pX ̸= 0 and iY ◦ pY ̸= 0. Lemma 4.2 tells us that iX ◦ pX ◦ iY ◦ pY = 0. Since two
non-zero elements of C cannot multiply to 0, we know that End(X⊕Y ) ≇ C. Therefore,
dim(End(X ⊕ Y )) ≥ 2. □

Proposition 4.20. Let C be idempotent complete. Then an object X ∈ C is simple if
and only if it is indecomposable.
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Proof. It is clear that simplicity implies indecomposability, so we only prove the other
direction. Suppose X ∈ C is not simple. Then there exists some non-trivial subobject A
with i ∈ C(A,X) and p ∈ C(X,A) such that p◦i = 1A. Since A is non-trivial, Lemma 4.16
tells us that i ◦ p ̸= 0 and i ◦ p ̸= 1X . This implies that i ◦ p is a non-trivial idempotent.
By Lemma 4.18, we have that X is decomposable. □

Theorem 4.21. Let C be semisimple and let X ∈ C. Then X is simple if and only if
End(X) ∼= C.

Proof. Suppose that End(X) ≇ C. Since End(X) is semisimple,

End(X) ∼=
Γ⊕
i=1

MNi
(C)

where Ni are positive integers. Since End(X) ≇ C, we have that

N :=
Γ∑
i=1

Ni ≥ 2.

Now let p ∈ End(X) be the idempotent corresponding to the matrix unit E11 ∈MN1(C)
(the matrix with a 1 in the top left corner and is zero everywhere else). Since N ≥ 2 and
p ̸= 0, we know that p is a non-trivial idempotent. By Lemma 4.18, we know that X
must be decomposable. Proposition 4.20 then implies that X is not simple.

If X is not simple, proposition 4.20 implies that X is decomposable. Lemma 4.19 then
implies that End(X) ≇ C. □

Theorem 4.22. Let C be a semisimple category. Then for every object X ∈ C, there
exist simples ci such that

X ∼=
⊕
i

ci

such that for all ci, cj, ci ∼= cj or ci and cj are distinct. In particular, every object in a
semisimple category is semisimple.

Proof. Let X ∈ C. Then End(X) ∼=
⊕

iMNi
(C). Therefore these exist qi ∈ End(X)

which are projections to the ith simple component of End(X) so that

1X =
∑
i

qi.

Using the same reasoning as many other proofs in this subsection, each of these summands
correspond to different subobjects of X whose direct sum is isomorphic to X. Let A,B
be two such subobjects. Consider a morphism f : A → B. Then we have that f =
pB ◦ iB ◦ f ◦ pA ◦ iA. However, we know from the simple decomposition of End(X) that
iB ◦ f ◦ pA = 0, so f = 0.

We now just have to prove that the summands of X decompose into isomorphic simple
objects. It is therefore sufficient to now just take X to be simple so that End(X) ∼=
Mn(C). Take qk ∈ End(X) to now be the idempotent corresponding to the diagonal
matrix with a single 1 in the kth place of the diagonal and 0’s everywhere else. Each
idempotent then corresponds to a summand Ak. Now take Eij ∈ End(X) to correspond
to the standard ijth matrix unit so that Eij = qi ◦ Eij ◦ qj. Finally, we have from Ak to
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Aj given by pAj
◦ Ejk ◦ iAk

. Note that qk = iAk
◦ pAk

and qk = Ekj ◦ Ejk. The inverse of
pAj

◦ Ejk ◦ iAk
is pAk

◦ Ekj ◦ iAj
which proves Aj ∼= Ak.

□

4.3. Unitarity.

Definition 4.23. Let C be a linear category. A dagger structure † on C is a collection of
anti-linear maps †X,Y : C(X, Y ) → C(Y,X) such that for all X, Y, Z ∈ C,

(1) †Y,X ◦ †X,Y = idC(X,Y ),
(2) for f ∈ C(X, Y ) and g ∈ C(Y, Z), (g ◦ f)† = f † ◦ g†.

Note that the above axioms introduce a convenient notation. A linear category equipped
with a dagger structure is called a dagger category.

Fact 4.24. For a linear category C and object X ∈ C, End(X) is an algebra. A dagger
structure on C then makes End(X) into a ∗-algebra by setting ∗ = †X,X .

Definition 4.25. Let C be a dagger category. If for each X ∈ C End(X) is a unitary
algebra, then we say that C is unitary.

5. Braided monoidal categories

Definition 5.1. Let C be a monoidal category. A braiding for an object X ∈ C is a
natural isomorphism ψ : −⊗X → X ⊗− such that the following diagram commutes:

Y ⊗ (Z ⊗X) Y ⊗ (X ⊗ Z)

(Y ⊗ Z)⊗X (Y ⊗X)⊗ Z

X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z

1Y ⊗ψZ

ψY ⊗Z ψY ⊗1Z

Definition 5.2. For a moniodal category C, we call a family of moprhisms cX,Y for each
X, Y ∈ C a braiding on C (and C a braided monoidal category) if c−,X and c−1

X,− are both
braidings on X ∈ C. TODO: check and add in unitor stuff

Definition 5.3. Suppose C is a monoidal category. The Drinfeld center Z(C) of C is a
category whose objects are given by all pairs (X,ψ) where X ∈ C and ψ is a braiding for
X. The morphisms f ∈ Z(C)((X,ψ), (Y, ϕ)) are morphisms f ∈ C(X, Y ) such that the
following diagram commutes

ZX ZY

XZ Y Z

1Z⊗f

ψZ ϕZ

f⊗1Z

Definition 5.4. Let C be a monoidal category with product ⊗. Then we define the
functor (using the same symbol unfortunately) ⊗ : Z(C) ⊗ Z(C) → Z(C) on objects
(X,ψ), (Y, ϕ) as (X,ψ)⊗ (Y, ϕ) := (X ⊗ Y, α) where

αZ := (1X ⊗ ϕZ) ◦ (ψZ ⊗ 1Y ).
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We leave it to the reader to check that (X,ψ)⊗ (Y, ϕ) ∈ Z(C). For morphisms,

((X,ψ)
f−→ (Y, ϕ))⊗ ((Z, η)

g−→ (Y, γ)) := (X
f−→ Y )⊗ (Z

g−→ Y ).

6. Fusion categories

There are many ways to define fusion categories. Some definitions show case many
other more general types of categories. Here we have opted for a more direct approach.

Definition 6.1 ((Multi-)Fusion category). A linear monoidal category C is called multi-
fusion if it is

• finitely semisimple (recall that semisimple subsumes idempotent complete),
• rigid.

We say that C is fusion if End(I) ∼= C.

Remark 6.2. In the definition of a fusion category, End(I) ∼= C subsumes the axiom
that I is simple when assuming the other axioms. This is because I = X⊕Y means that
End(I) is at least 2 dimensional.

See the following for notes on the relationship between unitarity and sphericity.
https://people.math.osu.edu/penneys.2/8800/Notes/FusionCats.pdf

6.1. Tube algebra.

Definition 6.3. Let C be a unitary fusion category. For f, g ∈ C(x, y ⊗ z), define
⟨f |g⟩ = Tr(f †g) using the trace Tr.

Proposition 6.4. The definition of ⟨·|·⟩ from definition 6.3 is an inner product.

Proof. TODO: □

Definition 6.5. Let C be a unitary fusion category. As a vector space, we define Tube(C)
as

Tube(C) :=
⊕

x,y,z∈Irr(C)

C(x⊗ y, z ⊗ x)

where the sum is taken over representatives of isomorphism classes of simple objects. Call
for x, y, z ∈ Irr(C), Tube(C)x,y,z := C(x ⊗ y, z ⊗ x). We now define the multiplication
· : Tube(C)⊗ Tube(C) → Tube(C). For w ̸= z, we take Tube(C)v,w,tTube(C)x,y,z = 0. Let
Bq be an orthonormal basis for C(v ⊗ x, q) for q ∈ Irr(C) using the inner product from
Definition 6.3. Then for f ∈ Tube(C)v,z,t and g ∈ Tube(C)x,y,z, we define

f · g :=
∑

q∈Irr(C)

∑
α∈Bq

√
dq
dvdx

α†

α

yq

q

v x

x

v

t

z

g

f
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