Introduction to algebraic K-theory Problem set 1

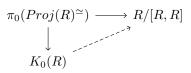
- **Ex. 1.** Recall that the group completion functor $(-)^{\text{gp}}$: CMon \rightarrow Ab is a left adjoint to the inclusion Ab \rightarrow CMon.
 - 1. Show that the unit map $M \to M^{\text{gp}}$ is injective if an only if for all a, b, c in M, it holds that a + c = b + c implies a = b.
 - 2. Let X be a topological space. Show that $Map(X, \mathbb{N})^{gp} \simeq Map(X, \mathbb{Z})$, where Map(X, Y) denotes the continuous maps $f: X \to Y$, and \mathbb{N} and \mathbb{Z} are considered as discrete topological spaces.
- **Ex. 2.** Show that {iso. classes of countably generated projective *R*-modules}^{gp} = $\{0\}$.

Hint: Use a Hilbert hotel like argument.

Ex. 3. The Hattori-Stallings trace.

Let R be an arbitrary ring, and M a left R-module.

- 1. Show that the hom $\operatorname{Hom}_R(M, R)$ has a right *R*-module structure.
- 2. Show that there is a map ev: $\operatorname{Hom}_R(M, R) \otimes_R M \to R/[R, R]$ induced by the evaluation map ev: $\operatorname{Hom}_R(M, R) \otimes_{\mathbb{Z}} M \to R$.
- 3. Using the previous parts, construct the canonical trace as below



Note: The group R/[R, R] is also known as $HH_0(R)$, the zeroth Hochschild homology of R. The *Dennis trace*, which is a fundamental tool for computations in algebraic K-theory, is a generalization of the Hattori-Strallings trace to higher K-theory, $K_*(R) \to HH_*(R)$.