Introduction to algebraic K-theory Problem set 3

Ex. 1. Let \mathcal{E} be an exact category. Without using the additivity theorem, show that the map

$$K_0(e(\mathcal{E})) \to K_0(\mathcal{E}) \times K_0(\mathcal{E})$$

induced by the functor $(s,q): e(\mathcal{E}) \to \mathcal{E} \times \mathcal{E}$ seen in the lecture, is always an isomorphism.

- **Ex. 2.** Let \mathcal{E} be an exact category. Show that the span $X \leftarrow Z \rightarrowtail Y$ is an isomorphism in \mathcal{QE} if and only if $p: Z \to X$ and $i: Z \rightarrowtail Y$ are isomorphisms in \mathcal{E} .
- **Ex. 3.** Let \mathcal{E} and \mathcal{E}' two exact categories, and let $F\mathcal{E} \to \mathcal{E}'$ an exact functor that is an equivalence between them. Show that $K_n(\mathcal{E}) \simeq K_n(\mathcal{E}')$ for all $n \ge 0$.
- **Bonus** If you are interested in these topics, I encourage you to read about Quillen's Theorem A and Theorem B. They require a bit more background so we won't see them, but they are at the base of the proof of several of the fundamental theorems of K-theory. And are a cool and important tool in general too!