Details at arXiv:1307.5812. Everything is dg. char=0.

0. Punchline of talk

Defn: An operation $f: \mathsf{Chains}_{\bullet}(\mathbb{R}^d)^{\otimes m} \to \mathsf{Chains}_{\bullet}(\mathbb{R}^d)^{\otimes n}$ is *quasilocal* if $\exists \ell \in \mathbb{R}$ s.t. $f(a_1 \otimes \cdots \otimes a_m)$ is in radius- ℓ nbhd of support $(a_i) \ \forall i$. These form properad $\mathsf{QLoc}(\mathbb{R}^d)$. (Technical convenience: force $m, n \neq 0$.)

Conj: For $d \geq 2$, space of formality morphisms of properad $QLoc(\mathbb{R}^d)$ is canonically homotopy equivalent to space of formality morphisms of operad E_d .

1. Some definitions

Defn: Associative algebras have compositions for each arrangement of beads on a string. Similarly:

 E_d algebras \leftrightarrow beads on \mathbb{R}^d operads \leftrightarrow rooted trees dioperads \leftrightarrow directed trees props \leftrightarrow acyclic directed graphs properads \leftrightarrow connected acyclic directed graphs

l.e. a properad P consists of $\mathbb{S}_m^{op} \times \mathbb{S}_n$ -modules P(m, n) of "m-to-n operations" and binary compositions

for $k \ge 1$, satisfying associative axioms for diagrams like:

E.g.: V a chain complex. $\operatorname{End}(V)(m,n) = \operatorname{hom}(V^{\otimes m},V^{\otimes n})$ defines a properad. An *action* of P on V (equivalently, V is a P-algebra) is a homomorphism $P \to \operatorname{End}(V)$.

E.g.: QLoc \subseteq End(Chains $_{\bullet}(\mathbb{R}^d)$). QLoc also acts on Cochains $^{d-\bullet}(\mathbb{R}^d)$, compatibly with Chains \hookrightarrow Cochains.

Thm (Vallette): Properads and props form model categories with fibration=surjection and acyclic=quasi-iso. Free : $\{\text{properads}\} \rightarrow \{\text{props}\}\$ is exact.

Warning: Free : $\{\text{dioperads}\} \rightarrow \{\text{props}\}\$ is not exact.

Notation: h P is any cofibrant replacement of P.

Defn: The *space* of maps $hP \to Q$ is the simplicial set whose k-simplices are maps $hP \to Q \otimes \Omega_{PL}(\Delta^k)$.

 $(\Omega_{PL}(\Delta^k)) = \text{Sullivan's polynomial forms on the } k\text{-simplex.})$

Fact: Different choices for h P give homotopy equiv spaces.

Defn: A formality morphism of X is a homotopy equiv between h X and $h H_{\bullet}(X)$, covering identity on H_{\bullet} .

There are enough filtrations that $H_{\bullet} \approx$ associated graded.

E.g.: $H_{\bullet}(E_d) = \operatorname{Pois}_d \ (d \ge 2)$: com algs with Poisson bracket of deg d-1. Formality \approx universal quantization.

Defn: $H_{\bullet}(QLoc(\mathbb{R}^d)) = invFrob_d$ controls open d-shifted involutive Frobenius algebras. Generators (read up):

Associativity and Frobenius relations:

$$= \bigvee_{i=1}^{d} , \quad \bigvee_{i=1}^{d} = (-1)^{d} , \quad \bigvee_{i=1}^{d} = \bigvee_{i=1}^{d} .$$
 Involutivity: $\Phi = 0$.

2. Technical tools

Defn: Under mild finiteness conditions, *bar dual* $\mathbb{D}P$ of properad P is free properad generated by $P^*[-1]$, with differential encoding binary compositions in P.

Fact: $\mathbb{D}P$ is cofibrant. $\mathbb{D}\mathbb{D}P = h P$ works, but it's big.

Fact: Good theory of quadratic and Koszul properads.

Defn: Frob₀ controls usual open com Frob algs.

Fact: $invFrob_d$ is Koszul $\forall d$. $Frob_0$ is unknown.

Lemma: $\forall P$, \exists canonical map $\mathbb{D} \operatorname{Frob}_0 \to \mathbb{D} P \otimes P$.

Remark: In dioperads, involutivity doesn't make sense. Frob_d is Koszul $\forall d$. Still have $\mathbb{D} \operatorname{Frob}_0 \to \mathbb{D} P \otimes P$.

3. Geometry and physics

Defn: $QFT = \text{computing } \int (\text{observable}) \exp(\frac{i}{\hbar}(\text{action})).$

The Batalin–Vilkovisky formalism identifies oscillating integrals with the following geometry:

Defn: A Beilinson-Drinfeld manifold X has \hbar -dependent differential $\Delta: \mathcal{O}(X) \to \mathcal{O}(X)$ such that: 1. $\partial(1) = 0$. 2. Δ is second-order diff op. 3. $\Delta|_{\hbar=0}$ is derivation.

Historical remark: Mathematicians' "BV structure" is related to E_2 and Deligne conjecture; it's similar, but differs by a sign in the \mathbb{Z} -gradings. (This is Getzler's fault.) B–D got it right (in their CFT book), so Costello–Gwilliam name the BD operad after them.

Exercise: So $(\mathcal{O}(X), \Delta|_{\hbar=0})$ is dgca. Principal symbol of $\frac{\partial}{\partial \hbar}|_{\hbar=0}\Delta$ makes $(\mathcal{O}(X)[1], \Delta|_{\hbar=0})$ into dgla, i.e. $\mathcal{O}(X)$ into Pois₀ algebra.

A polemical aside: In usual BV formalism, the $Pois_0$ structure is required to be *symplectic*. (Actual oscillating integrals \leftrightarrow cotangent bundles.) Locally, Poisson = symplectic with parameters. Global Poisson topology comes from symmetry / duality between theories. *So restricting just to symplectic things is wrong*.

Defn:

 $dgla: L_{\infty}:: Pois_d: semistrict homotopy Pois_d$

= system of multiderivations on $\mathcal{O}(X)$ making $\mathcal{O}(X)[1-d]$ into L_{∞} alg. "semistrict" = don't weaken Leibniz.

Defn:

dgla : L_{∞} :: BD : s.h.BD

= \hbar -dependent E_0 structure Δ on $\mathcal{O}(X)$ s.t. $\frac{\partial^n}{\partial \hbar^n}|_{\hbar=0}\Delta$ is (n+1)-order differential operator.

Exercise: Principal symbols turn s.h.BD into s.h.Pois₀.

Connection to properads: An *infinitesimal manifold* is $X = \operatorname{spec}\widehat{\operatorname{Sym}}(V)$.

s.h.Pois_d str on $X = \mathbb{D}$ invFrob_d str on V.

Let's declare \hbar to be formal variable. Then:

s.h.BD str on $X = \mathbb{D} \operatorname{Frob}_0$ str on V.

Remark: Above is *properadic* \mathbb{D} . In general,

dioperadic \mathbb{D} Frob_d = properadic \mathbb{D} invFrob_d.

4. The AKSZ construction

BV Formalism: Pois₀ structures pose oscillating integral problems. How to find Pois₀ strs on spaces of "fields"?

Thm (Alexandrov–Kontsevich–Schwarz–Zaboronsky): M is closed oriented d-dim manifold. X is symplectic Pois $_d$. Then Maps(M_{dR}, X) = derived space of locally constant maps $M \to X$ is symplectic Pois $_0$.

With one lie. It is symplectic. But it's ∞ -dim. How to invert to Poisson structure? (And see earlier polemic.)

I have an answer when $X = \operatorname{spec} \widehat{\operatorname{Sym}}(V) \approx V^*$.

Maps $(M_{dR}, V^*) = \mathcal{O}(M_{dR}) \otimes V^* = \Omega^{\bullet}(M) \otimes V^*$. Linear functions thereon $= (\Omega^{\bullet}(M) \otimes V^*)^* = \text{Chains}_{\bullet}(M) \otimes V$.

We are given a \mathbb{D} invFrob_d structure on V. We want a \mathbb{D} invFrob₀ structure on Chains $_{\bullet}(M) \otimes V$. Or, working

dioperadically, given $\mathbb{D}\operatorname{Frob}_d\to\operatorname{End}(V)$, find $\mathbb{D}\operatorname{Frob}_0\to\operatorname{End}(\operatorname{Chains}_{\bullet}(M)\otimes V)=\operatorname{End}(\operatorname{Chains}_{\bullet}(M))\otimes\operatorname{End}(V)$.

Thm: There is a canonical contractible space of quasilocal actions of *dioperadic* h Frob_d = \mathbb{DD} Frob_d on Chains_•(M).

Defn: Dioperadic $\mathbb{D}\operatorname{Frob}_0 \to \mathbb{D}\mathbb{D}\operatorname{Frob}_d \otimes \mathbb{D}\operatorname{Frob}_d \to \operatorname{End}(\operatorname{Chains}_{\bullet}(M)) \otimes \operatorname{End}(V)$ is the *classical Poisson AKSZ construction*.

What about quantum? Need properadic hinvFrob_d \rightarrow QLoc(M). When M closed and $\chi(M) \neq 0$, this definitely can't happen.

5. Relation to conjecture

Formality of $QLoc(\mathbb{R}^d)$ = quasilocal hinvFrob_d action on Chains_•(\mathbb{R}^d). This gives a way to turn s.h.Pois_d strs on $\widehat{Sym}(V)$ into s.h.BD strs on $\widehat{Sym}(Chains_{\bullet}(\mathbb{R}^d) \otimes V)$, i.e. E_0 strs on $\widehat{Sym}(Chains_{\bullet}(\mathbb{R}^d) \otimes V)[\![\hbar]\!]$.

Defn: Chains $_{\bullet}(\mathbb{R}^d) \simeq \mathbb{R} \Rightarrow \widehat{\operatorname{Sym}}(\operatorname{Chains}_{\bullet}(\mathbb{R}^d) \otimes V) \simeq \widehat{\operatorname{Sym}}(V)$. Homological perturbation lemma (= Feynman diagrams) \Rightarrow still true after deforming.

Map $\mathbb{R} \stackrel{\sim}{\to} \operatorname{Chains}_{\bullet}(\mathbb{R}^d)$ required choosing $\vec{z} \in \mathbb{R}^d$ (or a bump function). Still true after deforming. New map $\operatorname{Sym}(V)[\![\hbar]\!] \to \operatorname{Sym}(\operatorname{Chains}_{\bullet}(\mathbb{R}^d) \otimes V)[\![\hbar]\!]$ is the *insertion of an observable at* \vec{z} . Deformed map $\operatorname{Sym}(\operatorname{Chains}_{\bullet}(\mathbb{R}^d) \otimes V)[\![\hbar]\!] \to \operatorname{Sym}(V)[\![\hbar]\!]$ is *expectation value*.

Choose $\vec{z_1}, \ldots, \vec{z_n} \in \mathbb{R}^d$. Insert $f_1, \ldots, f_n \in \widehat{\text{Sym}}(V)$, multiply in $\widehat{\text{Sym}}(\text{Chains}_{\bullet}(\mathbb{R}^d) \otimes V)[\![\hbar]\!] \to \widehat{\text{Sym}}(V)[\![\hbar]\!]$, and take expectation values. This is the *n*-point function.

Theorem (modulo details — I've checked everything when d=1): The n-point function depends, of course, on (bumps near) $\vec{z}_1, \ldots, \vec{z}_n$. But if all bumps have pairwise disjoint closed support, then "large volume limit" $(z_i \mapsto rz_i$, take $r \to \infty$) of n-point function converges in powerseries topology. It is an n-ary multiplication, part of an E_d structure on $\widehat{\text{Sym}}(V)[\![\hbar]\!]$.

Cor (mod details): QLoc formailty \Rightarrow universal (wheelfree) E_d quantization for infinitesimal manifolds \Rightarrow universal E_d quantization $\Leftrightarrow E_d$ formality when $d \ge 2$.

Idea for the converse: E_d quantization \Rightarrow quantization of factorization algebra $\widetilde{\operatorname{Sym}}(\operatorname{Chains}_{\bullet}(-) \otimes V)$ over \mathbb{R}^d , for V the universal $\mathbb D$ invFrob $_d$ -algebra. Unpack the Feynman diagrams: get universal operations on $\operatorname{Chains}_{\bullet}(\mathbb{R}^d)$. Hopefully, these are a quasilocal action of h invFrob $_d$.

Warning: When d=1, $QLoc(\mathbb{R}^1)$ is not formal. See arXiv:1308.3423. $\not\exists$ universal E_1 quantization.