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Thank you to Ben for the invitation to speak here. Oh, and lest I forget, let me mention that what
I’ll tell you is joint work with Owen Gwilliam and joint work in progress with Shamil Shakirov.
(Well, at least the work with Owen is probably known to some experts, but we never saw it written
down. The work with Shamil is still in its beginning stages.)

Introduction

Before I begin with the real mathematics, I’d like to set my story in a little bit of context. I am
primarily a quantum field theorist. One of the basic tenets of quantum field theory is that:

Numbers of physical interest tend to arise as integrals

and in fact as expectation values for probability measures. The problem is that these integrals are
rarely analytically defined:

over spaces that do not support analytic definitions of integration.

The spaces that one would like to compute integrals over tend to be very infinite-dimensional,
highly stacky, etc.

Indeed, the spaces may not even be analytic objects at all. The phase space of the universe is
probably an algebraic variety, with dynamics controlled by algebraic differential equations. So all
answers should be numbers with some algebraic properties (periods. . . ).

So an ongoing project in quantum field theory is:

Goal: The algebraization of integration.

To restrict the problem a little bit, I will describe in more detail the types of integrals that seem
to arise in quantum field theory. There tends to be some naturally occurring “Lebesgue measure”
dLeb in some variables, and a distinguished polynomial function s in those variables (s is the first
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letter of “action”), and the measure you actually want is µ = exp(s)dLeb, and you want to compute
integrals (or maybe just expectation values) of polynomials.

〈f〉µ =

∫
f es dLeb

Anyway, there are at least three questions you can ask about such problems:

1. Undergraduate calculus: Given an algebraic description of µ (formula for s), compute
〈f〉µ for various f .

2. Inverse problem: Given some values of 〈f〉µ for various f , and an a priori restriction on
the “shape” of µ (e.g. the degree of s), compute µ.

3. Predicting experiments: Given some values of 〈f〉µ and restriction on the shape of µ,
compute 〈g〉µ for other functions g.

Usually in mathematics classes we only discuss problems of type 1, which is why I’ve labeled it
“undergraduate calculus”. But it’s the third type of problem that’s most important for physics,
because what we actually can measure are some values 〈f〉µ, and we’d like to predict more and
then test them. Unfortunately, I don’t have many exciting results for this third question, although
I’ll mention some ideas at the end of my talk. Instead, I’ll spent most of my talk discussing the
first question.

The ur-example, which would be great to generalize, is:

Wick’s Theorem (Isserlis, 1918): Suppose we are integrating over Rn and that
s is homogeneous quadratic, and identify such functions with symmetric matrices by
s(x) =

∑
ij sijxixj/2. Suppose that s has negative-definite real part (so that integrals

over Rn converge). Then the inverse matrix exists, and I’ll write (s−1)ij for its inverse
matrix. Suppose further that f is a homogeneous polynomial of degree m. Then:

1. 〈f〉 = 0 if m is odd. If m is even, then

〈f〉 = det(−2πs)−1/2 1

(m/2)!

∑
ij

(s−1)ij
4

∂2

∂xi∂xj

m/2

f

2. The data of s can be recovered as the inverse matrix to
〈xixj〉
〈1〉 .

3. The value of 〈f〉 can be computed from the value of 〈1〉 and the values of 〈xixj〉 just
for those variables xi and xj that appear in f . Indeed, even if s(x) is inhomogeneous
quadratic (with invertible homogeneous quadratic part), then you can compute
arbitrary 〈f〉 from the data of 〈1〉, 〈xi〉, and 〈xixj〉, and you only need the values
for those variables appearing in f .
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One thing to draw attention to in the last condition is that if means that you can let n go off to infin-
ity: Wick’s Theorem can be taken as a definition of “Gaussian integration” in infinite-dimensional
space, and to do physics you never need to know all the degrees of freedom. Note also the follow-
ing: We assumed that all eigenvalues of s have negative real part, and so the branch of (det)−1/2 is
unambiguous. But actually we can choose a branch cut along the set of s with a non-negative real
eigenvalue, and if we do so then the formula in 1. makes sense for, say, invertible purely-imaginary
s, whence it correctly computes the corresponding conditionally-convergent integrals.

In the real world, one application of Wick’s theorem is the following. You posit not that s is
homogeneous quadratic, but that it is quadratic plus some very small (infinitesimal coupling con-
stant) perturbation. Then the failure of 3. to hold exactly gives you data about the values of the
perturbation. This is the world of Feynman diagrams.

The problem, contours, and Stokes’ theorem

I will discuss the following situation. We choose a homogeneous complex-valued polynomial s of
degree d in n variables, and consider integrals of the form 〈f〉 =

∫
f es dLeb for f a polynomial.

This requires choosing a contour γ of integration: a real-n-dimensional subspace of Cn. In order
for the integral to converge we would like exponential decay at the ends of γ — i.e. we ask that
s→ −∞ along γ. For example, when n = 1 and s(x) = x3, here are some allowable contours:

Thus the action s really picks out a pairing:

(f, γ) 7→
∫
γ
f es dLeb : {polynomials} × {allowed contours} → C

I’m writing dLeb, but I really mean its holomorphic extension dz1 · · · dzn, which is a holomorphic
n-form on Cn.

Of course, we don’t really need all contours:

Stokes’ Theorem: The value of
∫
γ f e

s dLeb only depends on the class of γ in the

relative homology group Hn(Cn, {<(s) < 0}).
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When n > 1 (so that Hn(Cn) = 0), the long exact sequence for relative homology gives an isomor-
phism Hn(Cn, {<(s) < 0}) = Hn−1({<(s) < 0}). When n = 1, we have H1(Cn, {<(zd) < 0}) =
H0(C, {<(zd) < 0})/H0(C) is (d−1)-dimensional. For example, the above two contours are a basis
for the relevant space.

We also don’t need all polynomials:

Stokes’ Theorem: The value of
∫
γ f e

s dLeb only depends on the class of f in the

quotient space C[x1, . . . , xn]/( ∂f∂xi + f ∂s
∂xi
≡ 0).

All together, the important pairing is:

C[x1, . . . , xn]

(image of ∂
∂xi

+ ∂s
∂xi
·)
⊗Hn(Cn, {<(s) < 0}) −→ C

Conjecture (Fact?): This is a perfect pairing.

Maybe this is an obvious fact. I’m not very good at algebraic topology, but even working with
some of the other students at Berkeley who are good at algebraic topology, we were unable even to
directly calculate the dimension of Hn(Cn, {<(s) < 0}) = Hn−1({<(s) < 0}). On the other hand, I
do know that:

Fact: If s defines a smooth hypersurface in CPn−1, then dim( C[x1,...,xn]

( ∂
∂xi

+ ∂s
∂xi
·)) = (d− 1)n.

I’m much more of an algebraist than a topologist. The RH factor Hn(Cn, {<(s) < 0}) is the realm

of topology and analysis, and is inaccessible to pure algebra, whereas the LH factor C[x1,...,xn]

( ∂
∂xi

+ ∂s
∂xi
·) is in

the realm of pure algebra. So I will tell you how to completely analyze it.

Turning the question into homological algebra

We would like to understand the vector space C[x1, . . . , xn]/( ∂
∂xi

+ ∂s
∂xi
·). By “understand”, I mean

for example: C[x1, . . . , xn] has a distinguished basis (the monomials); we’d like a distinguished basis
for the quotient, and an explicit description of the quotient map with respect to these bases.

Here’s a useful problem-solving technique: “resolve” all quotients by finding them as H0 of some
chain complex.

In this case, I choose the following complex. Start with the graded commutative algebra V• =
C[x1, . . . , xn, ξ1, . . . , ξn], where |ξi| = 1 for homological degree.

V• = C[x1, . . . , xn]⊗ Λ•(ξ1, . . . , ξn)

I make it into a chain complex, but not a dg algebra, by choosing the differential

∂full =
∑
i

∂s

∂xi

∂

∂ξi︸ ︷︷ ︸
∂cl

+
∑
i

∂2

∂xi∂ξi︸ ︷︷ ︸
∂Leb
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The graded commutative algebra V• has a supergeometric interpretation as the algebra of (polyno-
mial) functions on the odd cotangent bundle ΠT∗Cn. The ξis correspond to the coordinate functions
vector fields ∂

∂xi
, thought of as (linear) coordinate functions on the cotangent bundle. Why the

cotangent and not tangent bundle? Algebraic reason: if you want to work equivariantly for the
GL(n) action on Cn, then you should let the ξis transform in the dual representation to how the
xis transform. Geometric reason: The (odd) tangent bundle to any manifold has a canonical (odd)
vector field on it. The (odd) cotangent bundle to any manifold has a canonical (odd) (symplec-
tic) Poisson bivector field on it. Here the Poisson bivector field is the principal symbol of the
second-order operator ∂full.

We want to understand the homology of (V•, ∂full). The basic idea is to study this in pieces. In
particular, we study (V•, ∂cl), and then understand ∂Leb as a perturbation of this. Our basic tool
is an easy version of homotopy-transfer of algebraic structures (here the algebraic structure is “a
choice of Maurer–Cartan element”):

Homotopy perturbation lemma (1960s): Suppose you are given a retraction (in
any additive category!)

(H•, ∂H) (V•, ∂)
φ

ι
η

ιφ = idH
φι = idV − [∂, η]

and a perturbation ∂  ∂ + δ, so that (∂ + δ) is a new differential on V•. Provided that
(idV − δη) is invertible, you get a new retraction:

(
H•, ∂̃ = ∂H + ι ◦ (id− δη)−1δ ◦ φ

)
(V•, ∂ + δ)

φ̃= (id−ηδ)−1◦φ

ι̃= ι◦(id−δη)−1

η̃= η(id−δη)−1

Proof: Check a bunch of equations.

Corollary: Suppose that H• is supported in degree 0. Then ∂̃ = 0, and so the homology
of V does not deform. Suppose furthermore that V• is supported in nonnegative degrees.
Then δ ◦ φ = 0 (as its domain is in degree 0, so its codomain would be in degree −1),
and so φ̃ = φ.

Note that (id− ηδ)−1 = id + η(id− δη)−1δ.

The most standard way to force (id − δη) to be invertible is to extend scalars by tensoring with
C[[~]], for some formal variable ~, and then asking that δ = O(~). Then δη is pro-nilpotent, and so
(id− δη)−1 exists. The next most standard thing is what we will do: there may be an N-filtration
on V• for which δη lowers degree. Then δη is ind-nilpotent, and again (id − δη) is invertible.
Filtrations are one of the standard ingredients in constructions of spectral sequences. The HPL is
essentially a formula-full replacement of spectral sequences; it has the advantage of being completely
deterministic.
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As an application, consider setting ∂ = ∂cl and δ = ∂Leb. We can set H• = H•(V•, ∂cl), with
zero differential. We call the differential

∑
i
∂s
∂xi

∂
∂ξi

by the name “cl” for “classical”: in physics
terminology, this is the differential that imposes “the classical equations of motion” (so you might
say that ∂full imposes “the quantum equations of motion”). Indeed, the complex (V•, ∂cl) has a
geometric interpretation: it is the derived critical locus of s. The point is that

H0(V•, ∂cl) = C[x1, . . . , xn]/( ∂s
∂x1

, . . . , ∂s
∂xn

)

is the algebra of functions on the critical locus {ds = 0} ↪→ Cn.

Fact: By homogeneity, the critical/singular locus of s resides entirely at 0 if it is zero-
dimensional, and otherwise it includes points at infinity. Thus if s defines a smooth
hypersurface in CPn−1 then {ds = 0} is the origin with some multiplicity. Since each
defining relation ∂s

∂xi
= 0 is of degree d − 1, and there are n of them, it follows from

Bezout’s theorem that this multiplicity is the origin in the critical locus is (d−1)n. Put
another way, dim H0(V•, ∂cl) = (d− 1)n.

In fact, all other homology groups of (V•, ∂cl) vanish if s is smooth. The geometric explanation of
this is that H•(V, ∂cl) is the algebra of functions on the odd cotangent bundle to the critical locus
of s, but this critical locus is zero-dimensional. A little later I will prove that H>0(V, ∂cl) = 0 when
s is generic, but for now let’s take it as true. Recall that smoothness is a generic condition — the
discriminant of s, which is some complicated polynomial in the coefficients of s, must not vanish.
In general, a generic condition is one that holds away from finitely many closed subvarieties, i.e.
we will ask that finitely many polynomials in the coefficients of s do not vanish.

So we have V• and ∂ = ∂cl, and we have H• = H•(V•, ∂cl), which generically is supported in degree
0. We have the projection map ι : V0 = C[x1, . . . , xn]→ O({ds = 0}) = H0. (Why “ι”, by the way?
Because it will deform to the “integration” map.) Let’s choose a splitting φ for ι. The projection
preserves polynomial degree, so let’s ask that the splitting does as well. Indeed, V• is naturally
N-graded by assigning the xis weight 1 and the ξis weight d− 1, so that ∂cl has weight 0. Then we
can always choose a homotopy η preserving this grading.

Now let’s see what happens when we turn on δ = ∂Leb =
∑

i
∂2

∂xi∂ξi
. It does not preserve the extra

Z-grading, but rather lowers it by d. So ∂Lebη is ind-nilpotent: for any given input f , eventually
(∂Lebη)Nf = 0 for N/d larger than the maximal weight of f . Thus we have that:

Corollary: If s is smooth, then H•(V, ∂full) is (d − 1)n-dimensional in degree 0, and
vanishes otherwise.

Note moreover that ι̃ is completely determined by the choice of φ̃ and ∂ + δ, since ι̃ must vanish
on ker(∂ + δ) and the image of φ̃ is a complement to the kernel, and ι̃ is then the unique map with
the prescribed behavior on this complement. Thus we see in fact that:

Any choice of splitting φ : O({ds = 0}) → C[x1, . . . , xn] (a vector space map, not a
map of algebras) determines an identification H0(V, ∂full) ∼= O({ds = 0}). The choice
of homotopy η is useful when looking for an explicit description of the projection V0 →
H0(V, ∂full).
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Thus one fully understands (in the sense of explicit matrices for an explicit basis) the “Stokes” map

C[x1, . . . , xn]→ C[x1,...,xn]

( ∂s
∂xi
·+ ∂

∂xi
)

as soon as one fully understands the critical locus — one should choose

a splitting as vector spaces of the restriction map C[x1, . . . , xn]→ O({ds = 0}), and although the
choice doesn’t matter one must also choose some homotopy η, at least in lowest degree.

Aside: We are primarily interested in the case when s is homogeneous. But in the real world it is
inhomogeneous. So I’d like to make a few comments on this situation. Let’s suppose first that s
is a polynomial such that the highest-degree part stop is smooth. Writing s = stop + ssub, we can
incorporate the sub-leading terms as part of the deformation:

∂full =
∑
i

∂stop

∂xi

∂

∂ξi︸ ︷︷ ︸
∂

+
∑
i

∂ssub

∂xi

∂

∂ξi
+
∑
i

∂2

∂xi∂ξi︸ ︷︷ ︸
δ

Then we still have that this δ lowers the “polynomial grading” described earlier, and so we can still
run the homotopy perturbation lemma.

Actually, this is also a technique for understanding the critical locus of an inhomogeneous s. We
can turn on just ssub and not ∂Leb with HPL if we want.

The more standard way that people approach inhomogeneous actions s is to suppose that s is a
non-singular quadratic plus a higher order deformation. The advantage of this approach is that
when s is pure nondegenerate quadratic, then the “classical” homology is one-dimensional, and
hence so is the homology of any deformation. But this makes it clear that if this higher-order
deformation is turned on with finite amplitude, the whole story breaks: the homology must grow
in dimension, but it cannot with homotopical deformations. So there are two ways to go, which are
largely equivalent. One is to work over a formal power series ring C[[λ]], where λ is some “coupling
constant”, and ask that s = nondegenerate quadratic +O(λ). The other approach is to replace the
polynomial ring C[xi] with a formal power series ring C[[xi]], so that the higher-order corrections
to ∂cl are small. But then ∂Leb is a very large correction. So you decide not to study integrals
against esLeb but rather agains es/~Leb, where ~ is yet another formal variable. Then the pertinent
differential is ∂full = ∂cl + ~∂Leb, and we have the necessary convergence.

In any case, the “integration” map ι̃ has a natural expression in terms of Feynman diagrams. We
explain this in more low-brow language in the paper with Owen. But briefly, the point is that the
classical ι for pure-quadratic s =

∑
ij sijxixj/2 evaluates every polynomial at 0, and the homotopy

can be taken to be η = 1
deg (s−1)ijξi

∂
∂xi

, so that δη takes f(x) either to
∑

(s−1)ij
∂2f

∂xi∂xj
, which is

like “closing a loop” or to
∑

(s−1)ij
∂f
∂xi

∂t
∂xj

, where t(x) are the “interaction terms”, which is like

“adding a vertex”, and each of these operations is weighted by some number corresponding to a
“symmetry factor”. Iterating the procedure infinitely, and then keeping only the closed diagrams
(constant terms of polynomials) gives the usual Feynman sum.
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Completely explicit formulas from an ad hoc choice of basis

I’ve said that you can do this all explicitly, so I owe you an example. Suppose that in s(x) all of the
coefficients ai = si...i on the pure monomials (xi)

d are non-zero. Then we can write s = sdiag +smix,
where sdiag(x) =

∑
i ai(xi)

d/d!. We want to compute the homology for ∂cl =
∑

i
∂s
∂xi

∂
∂ξi

, and
moreover compute it with a distinguished splitting H0 → V0 and a distinguished homotopy. Let’s
try to to write ∂cl = ∂diag + ∂mix and run the homotopy perturbation lemma.

So let’s look at the complex (V•, ∂diag). The important observation is that as a complex (in fact,
as a dgca) it factors as a tensor product:(

C[x1, . . . , xn, ξ1, . . . , ξn],
∑
i

ai
xd−1
i

(d− 1)!

∂

∂ξi

)
=
⊗
i

(
C[xi, ξi], ai

xd−1
i

(d− 1)!

∂

∂ξi

)

Then consider the tensorand
(
C[x, ξ], a xd−1

(d−1)!
∂
∂ξ

)
. Note that C[x, ξ] = C[x]⊕C[x]ξ, since ξ is odd.

It is clear that the homology here is (d − 1)-dimensional in degree 0. Indeed, the homology has
a basis consisting of the images of xm for m < d − 1. Let’s use this basis to split the homology
φ : H0 → V0. Moreover we can choose a homotopy:

η(xmξ) = 0, η(xm) =

{
0, m < d− 1
(d−1)!
a xm−d+1 ξ, m ≥ d− 1

Then we can tensor together these choices. The homology H0(V•, ∂diag) has as a basis the image
of all monomials xm1

1 · · ·xmn
n with all mi < d − 1, and so is (d − 1)n-dimensional as we said

earlier in the general case. This basis picks out a splitting φ : H0 → V0. There is in general no
canonical way to tensor together chain-complexes-with-choice-of-homotopy. One good choice is to
set ηdiag(xm1

1 · · ·xmn
n ) to 0 if all mi < d− 1 and otherwise

ηdiag

(
xm1

1 · · ·x
mn
n

)
=

∑
i
ξi
ai

(
∂
∂xi

)d−1∑
i

(
mi
d−1

) (
xm1

1 · · ·x
mn
n

)
.

This then gives the first term η : V0 → V1. In formulas this is the only part of η that will actually
matter. So we can make some ad hoc choice how to extend it to the rest of V•. Since V• split into
a sum of complexes based on the total degree (degree in x) + (d − 1)(degree in ξ), we can ask to
extend η preserving this splitting.

Now we have all the ingredients we need to turn on δ = ∂mix with the homotopy perturbation
lemma. In general, we then need (id − ∂mixηdiag) to be invertible. By splitting V• via the total
degree, we see that (id−∂mixηdiag) is block diagonal with finite-dimensional blocks. So invertibility
consists of countably many polynomials in the coefficients of s (the determinants of the blocks)
all not vanishing — such a condition is not “generic”, but it is very general. (Note that when
smix = 0 then it is invertible, so we’re looking at a nonempty intersection of countably many
Zariski-open sets, so since we are working over an uncountable field the intersecting is uncountable
and dense.)

theojf@math.berkeley.edu Northeastern, 2 March 2012

theojf@math.berkeley.edu


Theo Johnson-Freyd Wick’s Theorem beyond the Gaussian 9

Thus, for each choice of coordinates {xi}, we conclude that:

Working very generally in the choice of s, the homology of (V•, ∂cl) is supported in degree
0 and has as its basis the images of the monomials xm1

1 · · ·xmn
n with all mi < d − 1.

Using these monomials to pick the splitting H0 → V0, we can choose a homotopy ηcl

whose V0 → V1 part is
ηcl = ηdiag

(
id− ∂mixηdiag

)−1

where

∂mixηdiag(xm1
1 · · ·x

mn
n )

=


0, all mi < d− 1,

1∑
i

(
mi
d−1

) ∑
i1,...,id−1,j
not all equal

si1...id−1j

sj···j

xi1 · · ·xid−1

(d− 1)!

(
∂

∂xj

)d−1

(xm1
1 · · ·x

mn
n ).

Again note that ∂mixηdiag preserves the total degree of a polynomial in the xs, so invertibility can
be handled degree-by-degree.

In fact, a little bit more can be said. We know the homology of (V•, ∂cl) is (d−1)n-dimensional if s is
smooth. Let’s suppose that the H0(V•, ∂cl) does not have the images of {xm1

1 · · ·xmn
n , all mi < d−1}

as a basis. Then in homology there is a linear combination between these, and that is detected
in the part of V• with (degree in x) + (d − 1)(degree in ξ) ≤ n. So in fact only finitely many
polynomials in the coefficients of s must be non-zero:

For generic s, H0(V•, ∂cl), and hence H0(V•, ∂full), has as a basis the images of the
monomials {xm1

1 · · ·xmn
n , all mi < d− 1}.

What can happen is that the proposed degree-0 part of ηcl can make sense for some degrees of the
input, and then for some very large degree perhaps (id−∂mixηdiag) fails to be invertible. If we only
care to make calculations for some bounded degree of input, then we don’t care that this ηcl fails to
work higher up: some homotopy ηcl must exist (since we only need it to exist at the level of chain
complexes of vector spaces).

Finally, remember that what we’re really after is the complex (V•, ∂full) and in particular the
projection pfull : V0 → H0(V•, ∂full). So, generically we can choose the bases to be: monomial basis
for V0, and images of {xm1

1 · · ·xmn
n , all mi < d − 1} for H0. Then we want formulas for pfull with

respect to this basis. As we said earlier, turning on ∂Leb with HPL always wins, because the filtration
gives the guaranteed convergence. Working very generally if we want to input arbitrarily large-
degree polynomials, and generically if we bound the degree of the input, we find out that:

Theorem: IdentifyH0 = H0(V•, ∂full) with the span of the monomials {xm1
1 · · ·xmn

n ,mi <
d − 1}. Let pdiag : V0 → H0 denote the map that is the identity on these monomials,
and kills all polynomials divisible by some xd−1

i . Then the projection pfull : V0 → H0 is
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given by:

pfull = pdiag

(
id− ∂mixηdiag

)−1
∑
`≥0

(
∂Lebηdiag

(
id− ∂mixηdiag

)−1
)`

where ∂mixηdiag is as above (and preserves polynomial degree), and

∂Lebηdiag

(
xm1

1 · · ·x
mn
n

)
=


0, all mi < d− 1

1∑
i

(
mi
d−1

)∑
i

1

ai

(
∂

∂xi

)d (
xm1

1 · · ·x
mn
n

)
, else

and in particular drops polynomial degree by d.

One can try to interpret these formulas diagrammatically. I don’t really expect that it would be
enlightening to do so.

In summary, what have we done? Given the data of a (generic) degree-d polynomial s, we have
written explicit formulas, which are at worst rational functions in the coefficients of s, that express
any integral of the form

〈f〉 =

∫
γ
f es dLeb

in terms of the (d − 1)n values 〈xm1
1 · · ·xmn

n 〉, mi < d − 1. These formulas hold for any contour γ
(provided <(s)→ −∞ at the ends of the contour). If we only see the contours as living in a C-vector
space, then this is essentially optimal (if the conjecture about a perfect pairing is true).

A bit more work should be done, of course. In real life, the space of contours has an integral
structure. And in real life there is a preferred contour: the real axis γ = Rn ↪→ Cn. For usual
physics problems, the coefficients of s are entirely pure-imaginary, and then (generically) the real
axis does not give exponential decay, but it has a unique small deformation that does (and the
integrals over R converge conditionally to the values computed on the deformed contour).

But these integrals are very hard. In the Gaussian case, it’s easy: up to some constant that depends
only on n, if s is homogeneous quadratic and negative definite, then 〈1〉 =

∫
Rn exp(s) dLeb =

1/
√

det(−s). Shamil worked out the corresponding formula for pure quartic in two variables:∫
R2

exp(s) dLeb = I2(s)−1/6
2F1

(
1
12

5
12

1
2

∣∣∣∣∣6I2(s)3

I3(s)2

)

where 2F1 is one of Gauss’s hypergeometric functions, and I2(s) and I3(s) are the unique quadratic
and cubic SL(2)-invariants of s, normalized so that the discriminant is 6I2(s)3 − I3(s)2.

So this is an indication that the final step is hard.
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Comments on the inverse problem, and other further research

So where are we? If you know s, and know the integrals of some small monomials, you know
everything else. There are

(
n+d−1
d−1

)
∼ nd−1 degrees of freedom in choosing a degree-d polynomial

in n variables, and the contour is another (d − 1)n degrees of freedom. For fixed n and d, the
formulas we’ve given above do allow you to reconstruct this data from the values of nd−1 + (d−1)n

integrals, at least up to solving some system of algebraic equations. But as n and d grow, this is
not a practical answer. In particular, we’d really like to fix d but let n → ∞. For d > 2 we have
exponentially many contours and and algorithm that requires knowing the expectation values of
all 〈xm1

1 · · ·xmn
n 〉, mi < d− 1 will not be useful.

I don’t really expect that in the totally general case there would be anything better. There are
some special cases, though, worth commenting on.

We can say things completely when n = 1, although it’s a bit trivial there. More interestingly,
when n = 2 and d = 3, then H0 has no cubic basis vectors. Since ∂Lebηcl preserves degree mod 3,
we see get formulas expressing all 〈cubic〉s entirely in terms of 〈1〉, independently of the contour.
This allows to recover s from the 〈cubic〉s. But this doesn’t continue for larger n and d.

Another special case arises when we force some of the coefficients in smix to vanish. Specifically, a
degree-d monomial is either a basis vector for homology, or it is of the form xd−1y or xd for x and
y some variables. In the former case, ∂mixηdiag kills it. We can force ∂mixηdiag to turn the latter
case into the former case by forcing every term in smix divisible by some (xi)

d−3 to vanish. Then
on degree-d polynomials ηdiag∂mixηdiag = 0, and so pfull = pdiag(id + ∂mixηdiag)(id + ∂Lebηdiag) =
pdiag(id + ∂mixηdiag + ∂Lebηdiag). This isn’t that ad hoc of a restriction: lattice models in such that
each vertex has at least four neighbors, and an interaction term that involves a product over all
nearest neighbors. So it’s possible that we’ll find Wick-like results here.

As a final comment, even just understanding the “undergraduate calculus” problem that we de-
scribed here is valuable. Most importantly, of course, is that we might be able to use these tech-
niques to compute non-perturbative expectation values of Wilson loops in Chern–Simons theory.
No promises yet, of course, but it might work.
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