Me inside Jesus Rafael Soto's 'Penetrable BBL Blue 2/8' at the Perez Art Museum in Miami

Theo Johnson-Freyd

Associate Professor of Mathematics
Dalhousie University
Perimeter Institute
Email: theojf@dal.ca, theojf@pitp.ca

Research papers

Published and accepted for publication

  1. Appendix to: Extension Theory and Fermionic Strongly Fusion 2-Categories, by Thibault Décoppet. SIGMA, 2024. (arXiv:2403.03211, DOI:10.3842/SIGMA.2024.092.)

  2. (3+1)D topological orders with only a Z2-charged particle. Commun. Contemp. Math., 2024. (abstract, arXiv:2011.11165.)

  3. Mock modularity and a secondary elliptic genus. With Davide Gaiotto. Journal of High Energy Physics, 2023, 94. (abstract, arXiv:1904.05788. DOI:10.1007/JHEP08(2023)094)

  4. Minimal nondegenerate extensions. With David Reutter. Journal of the American Mathematical Society, Volume 37, Number 1, January 2024, Pages 81–150. (abstract, arXiv:2105.15167, DOI:10.1090/jams/1023.)

  5. Ground-state degeneracy of twisted sectors of Conway Moonshine SCFT. With Alissa Furet. Commun. Contemp. Math., 2024. (abstract, arXiv:2305.05081.)

  6. Topological Orders in (4+1)-Dimensions. With Matthew Yu. SciPost Physics, 13, 068 (2022). (abstract, arXiv:2104.04534, DOI:10.21468/SciPostPhys.13.3.068.)

  7. On the classification of topological orders. Communications in Mathematical Physics, 393, pp 989–1033 (2022). (abstract, arXiv:2003.06663, DOI:10.1007/s00220-022-04380-3, full-text published version.)

  8. Fusion 2-categories with no line operators are grouplike. With Matthew Yu. Bulletin of the Australian Mathematical Society, vol 104, issue 3, pp 434–442, December 2021. (abstract, arXiv:2010.07950, DOI:10.1017/S0004972721000095.)

  9. Holomorphic SCFTs with small index. With Davide Gaiotto. Canadian Journal of Mathematics, 2021:1-29. (abstract, arXiv:1811.00589. DOI:10.4153/S0008414X2100002X.)

  10. Supersymmetry and the Suzuki chain. Tunisian Journal of Mathematics, Vol 3, No 2, pp 309–359, 2021. (abstract, arXiv:1908.11012, DOI:10.2140/tunis.2021.3.309.)

  11. A note on some minimally supersymmetric models in two dimensions. With Davide Gaiotto and Edward Witten. In Integrability, Quantization, and Geometry II. Quantum Theories and Algebraic Geometry: Dedicated to the Memory of Boris Dubrovin 1950–2019, volume 103.2 of Proceedings of Symposia in Pure Mathematics, pp 203–222, Amer. Math. Soc., Providence, RI, 2021. (abstract, arXiv:1902.10249, AMS Bookstore.)

  12. Galois action on VOA gauge anomalies. Representation Theory, Mathematical Physics, and Integrable Systems: In Honor of Nicolai Reshetikhin, Progress in Mathematics vol 340, pp 345–370, 2021. (abstract, arXiv:1811.06495, DOI:10.1007/978-3-030-78148-4_12.)

  13. Heisenberg-picture quantum field theory. Representation Theory, Mathematical Physics, and Integrable Systems: In Honor of Nicolai Reshetikhin, Progress in Mathematics vol 340, pp 371–409, 2021. (abstract, arXiv:1508.05908, DOI:10.1007/978-3-030-78148-4_13.)

  14. Third homology of some sporadic finite groups. With David Treumann. Symmetry, Integrability and Geometry: Methods and Applications 15 (2019), 059. (abstract, arXiv:1810.00463, DOI: 10.3842/SIGMA.2019.059.)

  15. Symmetry protected topological phases and generalized cohomology. With Davide Gaiotto. Journal of High Energy Physics. May 2019. (abstract, arXiv:1712.07950, DOI: 10.1007/JHEP05(2019)007.)

  16. The Moonshine Anomaly. Communications in Mathematical Physics. February 2019, Volume 365, Issue 3, pp 943–970. (abstract. DOI: 10.1007/s00220-019-03300-2. Published PDF available at https://rdcu.be/bjHMt. arXiv:1707.08388.)

  17. H4(Co0;Z)=Z/24. With David Treumann. International Mathematics Research Notices, 2020, no. 21, 7873–7907. (abstract. DOI: 10.1093/imrn/rny219. arXiv:1707.07587.)

  18. How to derive Feynman diagrams for finite-dimensional integrals directly from the BV formalism. With Owen Gwilliam. Topology and quantum theory in interaction, 175–185, Contemp. Math., 718, Amer. Math. Soc., Providence, RI, 2018. (abstract. AMS bookstore. arXiv:1202.1554.)

  19. Spin, statistics, orientations, unitarity. Algebraic & Geometric Topology 17 (2017) 917–956. (abstract, arXiv:1507.06297, DOI: 10.2140/agt.2017.17.917.)

  20. (Op)lax natural transformations, twisted field theories, and the "even higher" Morita categories. With Claudia Scheimbauer. Advances in Mathematics, 307 (2017) 147–223. (abstract, arXiv:1502.06526, DOI: 10.1016/j.aim.2016.11.014.)

  21. The quaternions and Bott periodicity are quantum Hamiltonian reductions. Symmetry, Integrability and Geometry: Methods and Applications, 12 (2016), 116, 6 pages. (abstract, arXiv:1603.06603, DOI: 10.3842/SIGMA.2016.116.)

  22. Tree- versus graph-level quasilocal Poincaré duality on S1. Journal of homotopy and related structures, June 2016, Volume 11, Issue 2, pp 333–374. (abstract, arXiv:1412.4664, DOI: 10.1007/s40062-015-0110-2.)

  23. Homological perturbation theory for nonperturbative integrals. Letters in Mathematical Physics, November 2015, Volume 105, Issue 11, pp 1605–1632. (abstract, arXiv:1206.5319, DOI: 10.1007/s11005-015-0791-9.)

  24. Reflexivity and dualizability in categorified linear algebra. With Martin Brandenburg and Alexandru Chirvasitu. Theory and Applications of Categories, Vol. 30, No. 23, 2015, pp. 808–835. (abstract, arXiv:1409.5934, published version (open access).)

  25. Poisson AKSZ theories and their quantizations. In Proceedings of the conference String-Math 2013, volume 88 of Proceedings of Symposia in Pure Mathematics, pages 291–306, Providence, RI, 2014. Amer. Math. Soc. (abstract, PDF (published version), arXiv:1307.5812, DOI: 10.1090/pspum/088.)

  26. The fundamental pro-groupoid of an affine 2-scheme. With Alex Chirvasitu. Applied Categorical Structures, Vol 21, Issue 5 (2013), pp. 469–522. (abstract, arXiv:1105.3104, DOI: 10.1007/s10485-011-9275-y).

  27. The formal path integral and quantum mechanics. Journal of Mathematical Physics, 51, 122103 (2010). (abstract, published PDF, DOI:10.1063/1.3503472, arXiv:1004.4305, equation and theorem numbering differs between preprint and published versions).

  28. Feynman-diagrammatic description of the asymptotics of the time evolution operator in quantum mechanics. Letters in Mathematical Physics, November 2010, Volume 94, Issue 2, pp 123–149. (abstract, arXiv:1003.1156, available Open Access from Springer Link at DOI: 10.1007/s11005-010-0424-2).

Preprints